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For any particular Karle–Hauptman matrix, a bijective mapping exists between

the eigenvalue spectrum of the matrix and the set of structure-factor phases,

given enough phase constraints. For a matrix of order n + 1 with no symmetry-

equivalent reflections, n + 1 phases need to be fixed. Only a small subset of

matrices derived from centric reflections from trigonal or hexagonal space

groups have a bijective mapping without any fixed phases.

1. Introduction

The matrix A below is a Karle–Hauptman matrix of order (n + 1)

(Karle & Hauptman, 1950). The matrix comprises a set of structure

factors of which the top-row reflections are arbitrary but completely

determine the rest. The matrix is Hermitian, thus the set of (n + 1)

eigenvalues are real; the ordered set of these is the eigenvalue

spectrum.

A ¼

E0 E1 E2 E3 � � � En

E1 E0 E2�1 E3�1 � � � En�1

E2 E1�2 E0 E3�2 � � � En�2

..

. . .
.

En � � � E0

0
BBBBB@

1
CCCCCA
:

See Table 1 for definitions of the symbols in this paper. For an equal-

atom structure with N atoms, it can be shown that there will be N

nonzero eigenvalues and (n + 1)�N zero eigenvalues (van der Plas et

al., 1998a). Using the properties of the eigenvalues or determinant,

phase sets can be refined (de Gelder, de Graaf & Schenk, 1993; van

der Plas et al., 1998b; Tsoucaris, 1970). When refining phases in this

manner it is important to ensure that multiple phase sets do not

generate the same set of eigenvalues.

This paper examines the necessary constraints in order to ensure a

bijective mapping between the eigenvalue spectrum of a KH and the

included structure-factor phases. By this we mean that given a

particular set of phases (which conform to the constraints) the

eigenvalue spectrum is unique, i.e. no other phase set gives the same

spectrum. Conversely, given an appropriate eigenvalue spectrum the

set of phases is determined uniquely. The eigenvalue spectrum is

related to the electron density but it is not necessarily the same,

therefore in general the constraints are not just fixing the origin and

enantiomorph.

2. Matrix transforms

2.1. Eigenvalue-invariant transformations

Let A and B be square matrices of the same order with

�ðAÞ ¼ �ðBÞ. B can be transformed onto A using the similarity

transform

P�1BP ¼ A: ð1Þ

For Hermitian matrices it is also true that �ðATÞ ¼ �ðAÞ. No other

type of transformation needs to be considered.

2.2. Similarity transform

If A and B are KHs of the same order and are constructed from the

same structure factors, and we assume that the magnitudes are fixed,

any valid ST must maintain each magnitude. If the matrix is positive-

definite then the columns and rows of the matrix are linearly inde-

pendent. This means that the general form of P must be diagonal.

Given these constraints, the matrix C below will be the general form

of P (de Gelder, Elout et al., 1993; Ralph, 1991).

C ¼

expði’0Þ 0 � � � 0 0

0 expði’1Þ � � � 0 0

0 0 expði’2Þ � � � 0

..

. . .
.

0 0 � � � 0 expði’nÞ

0
BBBBB@

1
CCCCCA
:

Applying C as an ST using equation (1),

C�1AC ¼

E0 E1 expði�10Þ E2 expði�20Þ � � � En expði�n0Þ

� � � E0 E2�1 expði�21Þ � � � En expði�n1Þ

..

. . .
.

� � � E0

0
BBB@

1
CCCA:

Each ’i is arbitrary thus generating an infinite number of different

matrices with the same �ðAÞ. To limit the STs to the identity only, all

�’s need to be set to zero. This can be achieved by fixing a number of

phases.

Let R ¼ f�ij : i; j 2 f0; � � � ; ng; i> jg which contains nðn� 1Þ=2

elements. These �ij 2 R are associated with the reflections above the

Table 1
Nomenclature and abbreviations.

Ek�j ¼ E½ðhðkÞ � hðjÞ� normalized structure factors
�k�j the phase of the reflection Ek�j

h(0) the origin reflection
�; ’i;�ij reals modulo 2�
ki have the values � 1
�ij ¼ ’i � ’j each �ij is associated with Ei�j

A, B, C, P square matrices of order (n + 1)
�ðAÞ the eigenvalue spectrum of matrix A
ST similarity transform
KH Karle–Hauptman matrix



leading diagonal. Some elements of R can be combined to form

others, using the equations below.

�ik þ�kj ¼ ’i � ’k þ ’k � ’j ¼ �ij;

�ki þ�jk ¼ ’k � ’i þ ’j � ’k ¼ ��ij;

�ik ��jk ¼ ’i � ’k � ð’j � ’kÞ ¼ �ij;

�kj ��ki ¼ ’k � ’j � ð’k � ’iÞ ¼ �ij:

ð2Þ

Let T be a subset ofR for which all elements ofR can be generated

by those in T using equations (2). In order to set each �ij ¼ 0 it is

sufficient to set each ’i ¼ ’j ¼ �. Each � represents an equation

involving ’’s and the set of those obtained from T form a set of

linearly independent equations. As each ’ needs to be set to the same

value, resulting in a one-dimensional solution set, only n equations

would be needed to solve for (n + 1) unknowns, as stated in de

Gelder, Elout et al. (1993). This translates into T having exactly n

elements.

There is at least one choice for T , which is T ¼

f�i0 2 R : i 2 f1; . . . ; ngg. However, for orders greater than two, this

is not the only choice. For example for a 4 � 4 KH,

R ¼ f�10;�20;�30;�21;�31;�32g and T could be f�10;�20;�30g or

f�21;�32;�10g. However, it is clear that T 6¼ f�10;�20;�21g.

Fixing the phase of Ei�j implies that Ei�j is unchanged after

applying a valid ST, hence �ij ¼ 0. Setting

�ij ¼ 0 8�ij 2 T ) �ij ¼ 0 8�ij 2 R: ð3Þ

This is true because all members of R are generated by those in T .

Such an ST would be equivalent to the identity. Setting elements of T

equal to multiples of 2� would also lead to the identity transforma-

tion.

2.3. Transpose

Taking the transpose of a KH reverses the sign of all phases, hence

swapping the enantiomorph but leaving �ðAÞ unchanged. This

transformation is distinct from an ST and fixing phases from reflec-

tions associated with T is not sufficient to give a bijective mapping. In

most cases applying a nontrivial ST to the transpose will keep the

fixed phases invariant but change the others that were not fixed,

hence giving two phase sets that generate the same spectrum. In this

case fixing an additional acentric phase, to those required by x2.2, is

required. An obvious exception to this is when all the associated

reflections in R\T are real, i.e. phases are limited to 0 or �.

3. Symmetry

The use of symmetry-related reflections (instead of fixing phases) to

limit STs has already been considered (de Gelder, Elout et al., 1993).

However, the question remains as to what conditions are necessary to

guarantee a bijective mapping.

If there are two symmetry-related reflections Ei�j and Ek�l , then

�ij ¼ �kl or �ij ¼ ��kl (Bijvoet opposite). Any number of these

relationships is not sufficient for a bijective mapping. A set of

symmetry-related �ij can be limited if at least two are in T and a third

is related through equations (2). For example, assume that Ei�k;Ek�j

and Ei�j are symmetry equivalents and that �ik;�kj 2 T . From

equations (2) we have that �ik þ�kj ¼ �ij. After applying an ST, the

phases of the symmetry equivalents are shifted by ��, implying the

following:

k1�ik ¼ k2�kj ¼ k3�ij ¼ �; where ki ¼ �1; ð4Þ

) ðk1 þ k2 � k3Þ� ¼ 0 ðmod 2�Þ: ð5Þ

If k1 þ k2 � k3 ¼ �1, equation (5) has only one solution i.e. � ¼ 0,

making a bijective mapping possible. Given the conditions above,

Ei�k, Ek�j and Ei�j must be symmetry equivalents and with the

correct Bijvoet sign. The only Laue groups which fit these criteria are

3m, 6=m and 6=mmm. For example, reflections 110, 120 and 210 from

a P321 structure.

The next case to consider is that Ei�k, Ek�l , El�j and Ei�j are all

symmetry equivalents and that �ik;�kl;�lj 2 T . Thus equation (5)

would be modified to give

ðk1 þ k2 þ k3 � k4Þ� ¼ 0 ðmod 2�Þ:

This type of relationship will never lead to a bijective mapping

because k1 þ k2 þ k3 � k4 6¼ �1, thus there will always be more than

one solution. The same will be true for all relationships that have an

even number of �’s.

The next scenario could be that Eik, Ekl, Elm, Emj and Eij are

symmetry equivalents. Also that all the associated �’s are in T except

�ij. The symmetry relationships derived from the corresponding

equations to (4) and (5) are only satisfied by the same three Laue

groups. Although not all possible combinations of equations in (2)

and sets of � have been tested, it is assumed that the symmetry

restrictions are the same as above.

To complete the necessary constraints to ensure a bijective

mapping using symmetry only, each set of symmetry-related reflec-

tions must form relationships like those described above and T must

have a full compliment of n members. The above constraints still

might not be sufficient for a bijective mapping. From x2.3 the matrix

transpose must also be considered. Thus to achieve a bijective

mapping, from symmetry constraints alone, the KH must be real and

satisfy the above conditions.

4. Example

Below is a KH matrix, of order five, constructed from an artificial

structure in P212121. The reflection indices are shown for the upper

triangle of the matrix.

000 111 111 333 333

000 220 222 442

000 442 222

000 660

000

0
BBBBBB@

1
CCCCCCA

If we examine the symmetry equivalents in the matrix, we get the

following:

�10 ¼ �20 ¼ �; �30 ¼ �40 ¼ �;
�32 ¼ �41 ¼ �; �31 ¼ �42 ¼ �;

where �; �; �; � are reals modulo 2�. Using equations (2), we can find

relationships between the �’s:

�20 ��10 ¼ �21 ¼ 0;
�40 ��30 ¼ �43 ¼ 0;
�42 ��32 ¼ �43 ¼ 0) � ¼ �;
�40 ��20 ¼ �42 ) �� � ¼ �:

From this we can deduce that the phases for 220 and 660 are fixed but

there are an infinite number of possible phase sets generating the

same spectrum.

Table 2 shows different possible phase sets that give the same

eigenvalue spectrum. The solutions were verified numerically by

starting from random phases (except for those that were fixed) and
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refining phases by minimizing the current to the reference spectrum,

over many trials. One particular phase set was used to generate the

reference spectrum; this phase set is referred to as the correct set.

Case 1, where no phases were fixed, verifies that there is more than

one matrix with the same spectrum. From x2.2, four matrix elements

need to be fixed to limit the STs to the identity. As there are four pairs

of symmetry-related reflections, fixing two phases should be suffi-

cient. In cases 2 and 3 the associated �’s form a complete set T , thus

the STs are limited. However, in each case there was an additional

solution to the correct one. This confirms the assertion in x2.3 that a

transform of the transpose will also give the same spectrum. Case 4

shows that although the correct number of matrix elements were

fixed, this does not limit the STs. Case 5 shows that a bijective

mapping is possible by fixing three phases in this case.

5. Discussion

It has been shown here that it is possible to generate a bijective

mapping by fixing reflections. For a KH with no symmetry-equivalent

reflections then n + 1 phases need to be fixed in a matrix of order

(n + 1). It is clear from the example that arbitrarily selecting phase

constraints does not necessarily lead to a bijective mapping. Sections

2.2 and 2.3 provide a method to ensure a bijective mapping by fixing

matrix elements associated with �ij 2 T and possibly one other. The

patterns of matrix elements that form T are the same for any KH of a

particular order.

The inclusion of symmetry-related reflections in a KH complicates

matters. It is clear from x3 that only in a small number of cases will

symmetry by itself be able to ensure a bijective mapping. For most

KHs at least one phase must be fixed. This can be verified by

replacing the top-row reflections in the example by 111; 111; 111; 111.

In general there is no way of predicting the exact number of phases

that must be fixed.

If the eigenvalue spectrum of a particular KH could be predicted a

priori and sufficient phase constraints are applied to give a bijective

mapping, then all other phases would be determined uniquely. Such a

scenario could lead to a phase-extension method.
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Table 2
Different possible phase sets that give the same eigenvalue spectrum.

Phase sets are shown which have the same eigenvalue spectrum as the reference one,
given the indicated fixed phases.

Case Fixed phases Phases for (111, 333, 442, 222, 220, 660)

1 None 320, 70, 180, 30, 0, 180
160, 180, 90, 300, 0, 180 plus others

2 111, 333 340, 350, 80, 290, 0, 180†
240, 250, 300, 90, 0, 180

3 111, 222 340, 350, 80, 290, 0, 180†
340, 190, 140, 290, 0, 180

4 222, 422 230, 240, 80, 290, 0, 180
120, 130, 80, 290, 0, 180 plus others

5 111, 333, 222 340, 350, 80, 290, 0, 180†

† The correct phase set.


